A NO-CARRIER-ADDED ⁷²Se/⁷²As ISOTOPE GENERATOR

A. F. Novgorodov², <u>A. Schmidt¹</u>, J. Brockmann¹, S. M. Qaim³, F. Rösch¹

¹Institute for Nuclear Chemistry, Johannes Gutenberg-University, D-55128 Mainz, Germany; Joint Institute for Nuclear Research, Laboratory of Nuclear Problems, RUS-141980 Dubna, Russian Federation; ³Institute for Nuclear Chemistry, FZ Jülich GmbH, D-52425 Jülich, Germany

Key Words: As-72, Se-72, isotope generator

Summary

A no-carrier-added ⁷²Se/⁷²As generator has been developed for the isolation of ⁷²As, relevant for eventual application in the syntheses of ⁷²As-labelled radiopharmaceuticals. Avoiding the addition of Se carrier and using a thermochromatographic destillation process, no-carrier-added ⁷²As is nearly quantitatively released within 10 min. ⁷²Se remains almost quantitatively (> 99.7%) in solution when a temperature of the separation process of 100°C is applied.

Introduction

Arsenic-72 is a positron emitting isotope with properties which are promising for eventual application in ⁷²As-labelled radiopharmaceuticals. It has a positron emission rate of 88% and positron energies of $E_{\beta}+_{max} = 2.5$ MeV; $E_{\beta}+_{mean} = 1.0$ MeV [1]. Although the positron emission decay is accompanied by photons of 834 keV (79.5%), 630 keV (7.9%), 1464.1 keV (1.1%), and others (< 0.5%), the long physical half-life of 26 hours might turn ⁷²As into the PET isotope of choice for biochemical / physiological processes with longer biological half-lives. It can be directly produced at medium-energy cyclotrons via the ⁷²Ge(p,n)- or ⁷²Ge(d,2n)-, ⁶⁹Ga(\alpha,n)-, ⁷¹Ga(\alpha,3n)-, ⁷¹Ga(³He,2n)-reactions. More interestingly, however, is its availability as the daughter isotope of ⁷²Se (T_{1/2} = 8.5 d). ⁷²Se itself can be produced via direct processes such as ⁷⁰Ge(\alpha,2n)- and ⁷²Ge(³He,3n)- or via proton induced spallation reactions on RbBr [2]. It was the aim of this work to develop a ⁷²Se/⁷²As generator relevant for the routine separation of ⁷²As.

Chemical approaches applied until now were based on chromatographic columns, with ⁷²Se as Se^o adsorbed, while ⁷²As was eluated in rather large volumes of 15 ml [3]. Due to the amount of Se carrier, the separation yields are less than 70%. Another ⁷²Se/⁷²As generator was described in [4]. The separation of ⁷²As is achieved under addition of selenic acid carrier in each cycle, followed by reduction to metallic Se using hydrazonium hydrochlorid and its filtration with ⁷²As remaining in solution. Prior to the subsequent separation cycle, Se must be oxidised using H₂O₂.

Production and isolation of ⁷²Se

⁷²Se was produced via the ^{nat}Ge(³He,3n)⁷²Se-reaction (FZ Juelich, Germany). To isolate ⁷²Se the irradiated Germanium targets are dissolved in HCl/HNO₃ (2:1). After dissolution and distillation of HNO₃, HCl is added. GeCl₄ is removed from the solution via distillation while no-carrier-added ⁷²Se (and generated ⁷²As) is quantitatively remaining.

Cyclic separation of no-carrier-added ⁷²As from no-carrier-added ⁷²Se

The HCl solution containing ⁷²Se is transferred to a quartz or glass tube system as shown in Fig. 1, which is inserted vertically into an electric resistance oven (10). 1 g of KCl and 1 ml of conc. HCl are added under formation of nonvolatile ⁷²Se compounds and ⁷²As[AsCl₃] [5]. Hydrochloric acid (3) is passed through the inlet (2) into the apparatus with a stream of 20 ml/min. The temperature at position (7) of the ⁷²Se fraction inside the tube (1) is raised from 50 to 140°C. The ⁷²As is immediately volatilised as AsCl₃ and transported with the stream of hydrochloric acid through tube (4). It is not adsorbed on the inner tube even at its outlet (8), but on a cartridge (9) containing an adequate material (such as charcoal for example). The whole process takes about 10 min. Nocarrier-added ⁷²As is nearly quantitatively desorbed from the cartridge in > 90% yields using < 5 ml of H₂O or NaOH and it can be used immediately for labelling reactions.

The no-carrier-added ⁷²Se almost quantitatively remains in solution. Depending on the temperature of the separation process applied $(100 - 140^{\circ}C)$, > 99.7% of ⁷²Se are still present at position (7) and are ready for the next separation cycle without further treatment.

References

- 1 Browne E., Firestone R.B.: Table of Radioactive Isotopes (Ed. Shirley V.S.), John Whiley & Sons, 1986
- 2 Phillips D.R., United States Patent, Nr.: 5,371,372, Dez. 6, (1994); WO 93/04768, 18.03.1993
- 3 S.H. A-Kouraishi, G.G.J. Boswell, Int. J. Appl. Rad. Isot. 29 (1978) 607
- 4 Phillips D.R., United States Patent, Nr.: 5,371,372, Dez. 6, (1994); WO 93/04768, 18.03.1993
- 5 Gmelin, Handbuch der anorganischen Chemie 8 Auflage, System-Nummer 17, Arsen, Verlag Chemie Weinheim, 383, (1952)

Acknowledgement

Support by the Deutsche Forschungsgemeinschaft (DFG-Grant Ro 985/9) and co-operation with the Institute for Nuclear Chemistry, FZ Jülich, is grateful acknowledged.

J. Labelled Cpd. Radiopharm. 44, Suppl. 1 (2001)